Промежуточная аттестация по физике за 1 полугодие 11 класса

Промежуточная аттестация по физике в 11 классе состоит из 3 частей:

- 1. Устное собеседование по вопросам
- 2. Решения задач в формате теста
- 3. Выполнения лабораторных задач

Время промежуточной аттестации – 90 мин

Структура работы

	Задание	Время на	Форма проведения
		выполнение	
		задания	
1.	Устное	15 мин	Устный ответ по вопросам из каждой темы на выбор
	собеседование по		учителя.
	вопросам		
2.	Решение задач в	30 мин	Все задачи из предложенных в данном документе
	формате теста		решены в тетради ученика.
			На промежуточной аттестации предлагается решить
			1-2 задачи из темы (на выбор учителя)
3.	Выполнение	45 мин	Самостоятельное выполнение лабораторных работ на
	лабораторной		выбор учителя.
	работы		Обучающийся имеет право пользоваться
			прилагаемыми в документе описаниями к л/р.
			Оборудование для л/р выдает учитель.
ИТОГО		90 минут	

Планируемые результаты

Электрическое поле

Знать смысл	Уметь
ключевых терминов	
• смысл физических	• описывать и объяснять результаты наблюдений и экспериментов:
величин:	электризация тел при контакте
элементарный	• приводить примеры опытов, иллюстрирующих, что: наблюдения и
электрический заряд,	эксперимент служат основой для выдвижения гипотез и построения
напряженность	научных теорий; эксперимент позволяет проверить истинность
электрического поля,	теоретических выводов; физическая теория дает возможность
разность потенциалов,	объяснять явления природы и научные факты; физическая теория
электроемкость,	позволяет предсказывать еще неизвестные явления и их
энергия	особенности; при объяснении природных явлений используются
электрического поля,	физические модели; один и тот же природный объект или явление
• смысл физических	можно исследовать на основе использования разных моделей; за-
законов, принципов и	коны физики и физические теории имеют свои определенные гра-
постулатов	ницы применимости;
(формулировка,	• описывать фундаментальные опыты, оказавшие существенное
границы	влияние на развитие физик;
применимости):	• применять полученные знания для решения физических задач

принцип суперпозиции закон сохранения электрического заряда, закон Кулона

- вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики
- *определять*: характер физического процесса по графику, таблице, формуле
- приводить примеры практического применения физических знаний: законов электродинамики в энергетике;
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, научно-популярных статьях; использовать новые информационные технологии для поиска, обработки и предъявления информации пофизике в компьютерных базах данных и сетях (сети Интернет)

Законы постоянного тока Уметь Знать смысл ключевых терминов • смысл физических • описывать и объяснять результаты наблюдений и экспериментов: зависимость сопротивления по проводников от температуры и величин: сила электрического тока, освещения • приводить примеры опытов, иллюстрирующих, что: наблюдения и электрическое напряжение, эксперимент служат основой для выдвижения гипотез и построения научных теорий; эксперимент позволяет проверить истинность электрическое теоретических выводов; физическая теория дает возможность сопротивление, электродвижущая объяснять явления природы и научные факты; физическая теория сила позволяет предсказывать еще неизвестные явления • смысл физических особенности; при объяснении природных явлений используются законов, принципов и физические модели; один и тот же природный объект или явление постулатов можно исследовать на основе использования разных моделей; законы физики и физические теории имеют свои определенные гра-(формулировка, ницы применимости границы • описывать фундаментальные опыты, оказавшие существенное применимости): закон Ома для полной цепи, влияние на развитие физики • применять полученные знания для решения физических задач закон Джоуля— • определять: характер физического процесса по графику, таблице, Ленца, основные положения изучаемых формуле физических теорий и • измерять: электрическое сопротивление, ЭДС и внутреннее сопротивление источника тока, представлять результаты измерений их роль в формировании с учетом их погрешностей; • приводить примеры практического применения физических знаний: научного законов электродинамики в энергетике; мировоззрения; • вклад российских и • воспринимать и на основе полученных знаний самостоятельно оцезарубежных ученых, нивать информацию, содержащуюся в сообщениях СМИ, научнооказавіних популярных статьях; использовать новые информационные наибольшее влияние технологии для поиска, обработки и предъявления информации по на развитие физики физике в компьютерных базах данных и сетях (сети Интернет)

Магнитное поле и электромагнитная индукция

Знать смысл ключевых	Уметь
терминов	
• смысл физических	• описывать и объяснять результаты наблюдений и
величин: магнитный	экспериментов: электромагнитная индукция
поток, индукция	• приводить примеры опытов, иллюстрирующих, что: наблюдения
магнитного поля,	и эксперимент служат основой для выдвижения гипотез и постро-
индуктивность, энергия	ения научных теорий; эксперимент позволяет проверить истин-
магнитного поля	ность теоретических выводов; физическая теория дает возмож-
• смысл физических	ность объяснять явления природы и научные факты; физическая
законов, принципов и	теория позволяет предсказывать еще неизвестные явления и их
постулатов	особенности; при объяснении природных явлений используются
(формулировка,	физические модели; один и тот же природный объект или явление
границы	можно исследовать на основе использования разных моделей; за-
применимости): закон	коны физики и физические теории имеют свои определенные гра-
электромагнит	ницы применимости
индукции, основные	• описывать фундаментальные опыты, оказавшие существенное
положения изучаемых	влияние на развитие физики
физических теорий и их	• применять полученные знания для решения физических задач
роль в формировании	• определять: характер физического процесса по графику, таблице,
научного	формуле
мировоззрения;	• приводить примеры практического применения физических
• вклад российских и	знаний: законов электродинамики в энергетике
зарубежных ученых,	• воспринимать и на основе полученных знаний самостоятельно
оказавших наибольшее	оценивать информацию, содержащуюся в сообщениях СМИ,
влияние на развитие	научно-популярных статьях; использовать новые
физики	информационные технологии для поиска, обработки и
	предъявления информации по физике в компьютерных базах
	данных и сетях (сети Интернет)

Эл магнитные колебания и волны

Знать смысл ключевых	Уметь
терминов	
• смысл понятий:	• приводить примеры опытов, иллюстрирующих, что: наблюдения
электромагнитные	и эксперимент служат основой для выдвижения гипотез и постро-
колебания,	ения научных теорий; эксперимент позволяет проверить истин-
электромагнитное поле,	ность теоретических выводов; физическая теория дает возмож-
электромагнитная	ность объяснять явления природы и научные факты; физическая
волна	теория позволяет предсказывать еще неизвестные явления и их
• смысл физических	особенности; при объяснении природных явлений используются
величин: период,	физические модели; один и тот же природный объект или явление
частота, амплитуда	можно исследовать на основе использования разных моделей; за-
колебаний, длина	коны физики и физические теории имеют свои определенные гра-
волны	ницы применимости;
• смысл физических	• описывать фундаментальные опыты, оказавшие существенное
законов, принципов и	влияние на развитие физики

постулатов
(формулировка,
границы
применимости):
основные положения
изучаемых физических
теорий роль в
формировании
научного
мировоззрения

• вклад российских и зарубежных ученых, оказавших наибольшее влияние на развитие физики

- применять полученные знания для решения физических задач
- *определять:* характер физического процесса по графику, таблице, формуле
- *измерять:* показатель преломления вещества, оптическую силу линзы, длину световой волны, представлять результаты измерений с учетом их погрешностей;
- приводить примеры практического применения физических знаний: законов электродинамики в энергетике; различных видов электромагнитных излучений для развития радио- и телекоммуникаций
- воспринимать и на основе полученных знаний самостоятельно оценивать информацию, содержащуюся в сообщениях СМИ, научно-популярных статьях; использовать новые информационные технологии для поиска, обработки и предъявления информации по физике в компьютерных базах данных и сетях (сети Интернет

Оглавление

ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ	11
Вопросы для собеседования по теме КОНДЕНСАТОРЫ	11
Вопросы для собеседования по теме ЭЛ ТОК	12
Вопросы для собеседования по теме ХАРАКТЕРИСТИКИ ПРОЦЕССА ПРОТЕКАНИЯ ЭЛ ТОКА В ЦЕПИ	i12
Вопросы для собеседования по теме СОЕДИНЕНИЕ ПРОВОДНИКОВ	12
Вопросы для собеседования ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ	12
Вопросы для собеседования по теме РАБОТА ЭЛ. ТОКА. ЗАКОН ДЖОУЛЯ-ЛЕНЦА	13
Вопросы к собеседованию по теме ЭЛ ТОК В СРЕДАХ	14
Вопросы для собеседования по теме МАГНИТНОЕ ПОЛЕ	15
Вопросы для собеседования по теме ЯВЛЕНИЕ ЭМИ	15
Вопросы для собеседования по теме ПРОИЗВОДСТВО И ПЕРЕДАЧА ЭЛ ЭНЕРГИИ	15
Вопросы для собеседования по теме ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ	16
ТЕСТЫ	16
Тест ЭЛ ПОЛЕ НАПРЯЖЕННОСТЬ	16
Тест КОНДЕНСАТОРЫ	18
Тест ХАРАКТЕРИСТИКИ ПРОЦЕССА ПРОТЕКАНИЯ ТОКА В ЦЕПИ	19
Тест СОЕДИНЕНИЕ ПРОВОДНИКОВ	20
Тест ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ	20
Тест РАБОТА ЭЛ ОКА. ЗАКОН ДЖОУЛЯ-ЛЕНЦА	21
Тест МАГНИТНОЕ ПОЛЕ	21
Тест СИЛА АМПЕРА. СИЛА ЛОРЕНЦА	22
Тест ЯВЛЕНИЕ ЭМИ	23
Тест ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ	24
ЛАБОРАТОРНЫЕ РАБОТЫ	24
Лабораторная работа ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ПРОВОДНИКА	24
Лабораторная работа ИЗМЕРЕНИЕ ЭДС И ВНУТРЕННЕГО СОПРОТИВЛЕНИЯ ИСТОЧНИКА ТОКА	25
Лабораторная работа ИЗУЧЕНИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ	27

ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ

Вопросы для собеседования по теме КОНДЕНСАТОРЫ

- 1. Открытие
- 2. Назначение
- 3. Строение
- 4. Обозначение на схеме
- 5. Электроемкость: обозначение, формула, единица измерения, от чего зависит
- 6. Формула электроемкости плоского конденсатора

7. Энергия заряженного конденсатора

Вопросы для собеседования по теме ЭЛ ТОК

- 1. Электрический ток: определение, направление
- 2. Строение металлов
- 3. Условие существование тока
- 4. Источники тока: необходимость в цепи, виды, обозначение на схеме, изобретение
- 5. Действия эл тока и их применение
- 6. Основные части и элементы эл цепи

Вопросы для собеседования по теме ХАРАКТЕРИСТИКИ ПРОЦЕССА ПРОТЕКАНИЯ ЭЛ ТОКА В ЦЕПИ

- 1. Сила тока: определение, обозначение, формула, единицы измерения, прибор для измерения и правила его подключения.
- 2. Напряжение: определение, обозначение, формула, единицы измерения, прибор для измерения и правила его подключения.
- 3. Закон Ома для участка цепи: открытие, опыт, график I (U), формулировка, математическая запись, графики
- 4. Эл. сопротивление:
 - определение, обозначение, единицы измерения, прибор для измерения.
 - графики R(I), R(U), I(R)
 - зависимость сопротивления проводника от его длины, площади поперечного сечения и материала проводника. Опыты. Графики. Выводы. Формула. применение и учет
 - зависимость сопротивления проводника от температуры. применение и учет
- 5. Закон Ома для участка цепи: эксперимент, формулировка, математическая запись.

Вопросы для собеседования по теме СОЕДИНЕНИЕ ПРОВОДНИКОВ

- 1. Законы последовательного соединения проводников.
- 2. Законы параллельного соединения проводников.
- 3. Расчет шунта. Причины. Схема. Формула
- 4. Расчет добавочного сопротивления. Причины. Схема. Формула

Вопросы для собеседования ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

- 1. Замкнутая цепь. Схема. Наблюдаемые явления
- 2. Источники тока
 - Необходимость введения
 - Виды
 - Сторонние силы
 - Характеристики
- 3. ЭДС
 - Обозначение. Опр. Формула. Ед измерения
 - Измерение ЭДС
 - Знак ЭДС
 - ЭДС нескольких последовательно соединенных источников

- ЭДС несколько параллельно соединенных источников
- 4. Закон Ома для полной цепи. Математическая запись
 - Закон Ома для случая включения в схему несколько последовательно соединенных источников тока
 - Закон Ома для случая включения в схему несколько параллельно соединенных источников тока

Вопросы для собеседования по теме РАБОТА ЭЛ. ТОКА. ЗАКОН ДЖОУЛЯ-ЛЕНЦА

- 1. Работа постоянного тока. Формулы
- 2. Закон Джоуля Ленца. Формулировка. Математическая запись для последовательного и параллельного соединения
- 3. Единицы измерения работы и количества теплоты. Связь между ними
- 4. Мощность постоянного тока.
 - Обозначение. Опр. Формула.
 - Единицы измерения и связь между ними
 - Прибор для измерения мощности

Вопросы к собеседованию по теме ЭЛ ТОК В СРЕДАХ

Собеседование идет на основе заполненной таблицы

	металлы	жидкости	полупроводники	вакуум	газы
Носители заряда					
Причины создания					
носителей заряда					
Процесс создания					
носителей заряда					
Факторы, влияющие					
на концентрацию					
носителей заряда					
Зависимость					
сопротивления					
проводника от					
температуры					
Основные законы и					
формулы					
Вольт-амперная					
характеристика					
Применение					

Вопросы для собеседования по теме МАГНИТНОЕ ПОЛЕ

- 1. Взаимодействие параллельных токов. Магнитное взаимодействие
- 2. Магнитное поле
 - Опыт Эрстеда
 - Свойства
- 3. Вектор магнитной индукции
 - Обозначение
 - Формула
 - Ед измерения
 - Направление
- 4. Линии магнитной индукции
 - Определение
 - Свойства
 - Правило буравчика
 - Правило обхвата правой руки
- 5. Вихревое поле
- 6. Поток магнитной индукции. Обозначение. Формула. Ед измерения

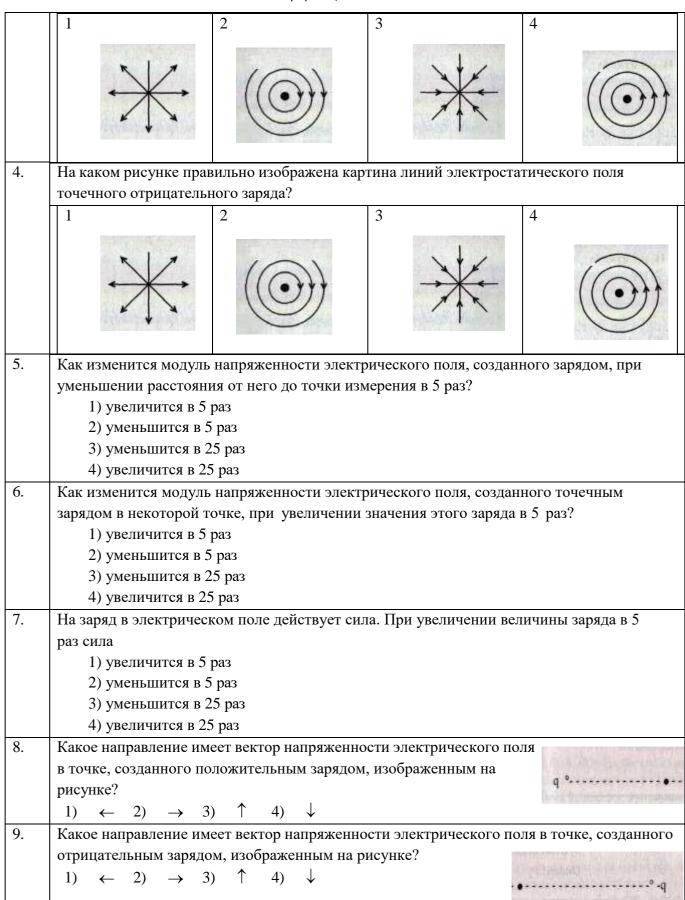
Вопросы для собеседования по теме ЯВЛЕНИЕ ЭМИ

- 1. Открытие явления ЭМИ
- 2. Определение явления ЭМИ
- 3. Механизм возникновения индукционного тока в замкнутом контуре
- 4. Характеристика вихревого эл поля
 - Название
 - Обозначение
 - Определение
 - Формула
 - Ед измерения
- 5. Правило Ленца
- 6. Закон ЭМИ
 - Формулировка
 - Математическая запись

Вопросы для собеседования по теме ПРОИЗВОДСТВО И ПЕРЕДАЧА ЭЛ ЭНЕРГИИ

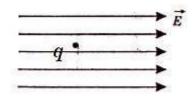
- 1. Классификация эл станций
- 2. Генераторы эл энергии
- 3. Строение и принцип работы ГЭС
- 4. Строение и принцип работы ТЭС
- 5. Строение и принцип работы АЭС
- 6. Строение и принцип работы ВЭС
- 7. Строение и принцип работы гелиостанций
- 8. Линии электропередач
- 9. Трансформатор: строение, принцип работы

10. Применения эл энергии в повседневной жизни и нар хозяйстве


Вопросы для собеседования по теме ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ

- 1. Колебание: определение; признак колебательного движения (периодичность)
- 2. Колебательные системы: определение, признаки
- 3. Классификация колебаний
- 4. Условия наблюдения свободных колебаний
- 5. Параметры колебательного движения
- 6. Гармонические колебания
- 7. Формула периода для различных колебательных систем
- 8. Примеры эл магнитных колебаний в природе и технике; особенности колебательного движения.
- 9. Свободные эл магн колебания
- Определение, колебательный контур
- Условия возникновения
- Механизм колебаний в колебательном контуре
- Основные характеристики колебательного движения (амплитуда. Период, частота, циклическая частота, фаза колебаний), их физический смысл, зависимость о внешних воздействий или свойств самой системы, взаимосвязь характеристик
- 1. Гармонические эл магн колебания.
 - Уравнение гармонического колебания и его анализ
 - Решение уравнения гармонического колебания
 - Графики зависимости заряда, силы тока, ЭДС, напряжения от времени
- 2. Частота и период колебаний в колебательном контуре и их зависимость от емкости конденсатора и индуктивности катушки
- 3. Затухание колебание и предотвращение затухания. Вынужденные эл магн колебания и их особенности.
- 4. Явление резонанса и его назначение для реализации радиосвязи

ТЕСТЫ


Тест ЭЛ ПОЛЕ НАПРЯЖЕННОСТЬ

1.	Электрическое поле создается
	А. электрическим зарядом
	В. неподвижным электрическим зарядом
	С. движущимся электрическим зарядом
	D. движущимся с ускорением электрическим зарядом
2.	Индикатором электрического поля является
	А. электрический заряд
	В. неподвижный электрический заряд
	С. движущийся электрический заряд
	D. движущийся с ускорением электрический заряд
3.	На каком рисунке правильно изображена картина линий электростатического поля
	точечного положительного заряда?

10.	Однородное электрическое поле				
	изображено на рисунке	e =	1	+ + + + + +	1
	1) 3		3/2		· 8.
	2) 4	八		<u> </u>	
	3) 2	30041 842 990	2 J 22	e >> d	
	4) 1	1	2	3	4

- 11. За направление вектора напряженности электростатического поля принято
 - 1) направление вектора скорости отрицательного точечного заряда, который перемещается под действием поля
 - 2) направление вектора силы, действующей на точечный отрицательный заряд, помещенный в поле
 - 3) направление вектора скорости положительного точечного заряда, который перемещается под действием поля
 - 4) направление вектора силы, действующей на точечный положительный заряд, помещенный в поле
- 12. В каком направлении на положительный заряд в электрическом поле, изображенном на рисунке, будет действовать сила?
 - $1) \quad \leftarrow \quad 2) \quad \rightarrow \quad 3) \quad \uparrow \quad 4)$

13. К бесконечной горизонтальной отрицательно заряженной плоскости привязана невесомая нить с шариком, имеющим положительный заряд (см. рисунок). Каково условие равновесия шарика, если mg – модуль силы тяжести,

 $F_{\mathfrak{d}}$ — модуль силы электростатического взаимодействия шарика с пластиной, T — модуль силы натяжения нити?

1)
$$-mg - T + F_9 = 0$$

2)
$$mg + T + F_9 = 0$$

3)
$$mg - T + F_9 = 0$$

4)
$$mg - T - F_9 = 0$$

1. Каждому параметру из первого столбца приведите в соответствие параметры из второго, третьего и четвертого столбцов. Ответ дайте в виде чередования букв и цифр.

Столбец 1	Столбец 2	Столбец 3	Столбец 4
Характеристики	Обозначение	Единицы измерения	Векторная или
электрического поля	величины	величины	скалярная величина
А. Напряженность	1. q	а) Кл	I. векторная
В. Потенциал	2. φ	b) Bt	II. скалярная
	3. A	c) H	
	4. E	d) H/Кл	
	5. F	e) A	
		f) B	

Тест КОНДЕНСАТОРЫ

1. Как изменится электроемкость конденсатора если разность потенциалов между обкладками уменьшить в 2 раза?

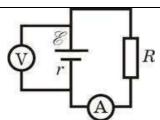
2.	Как изменится заряд на пластинах конденсатора, если напряжение между его пластинами увеличить в 3 раза?
3.	Электрический заряд конденсатора равен 10 Кл. Напряжение между пластинами равно
	10 ⁵ В. Вычислите электрическую емкость конденсатора.
4.	Как изменится электрическая емкость плоского конденсатор если площадь пластин
	увеличить в 3 раза?
5.	
5.	Как изменится емкость конденсатора, если расстояние между обкладками конденсатора
	уменьшить в 2 раза, а площадь перекрытия увеличить в 3 раза?
6.	Электрический заряд на одной пластине конденсатора равен +2 Кл, на другой равен
	-2 Кл. Напряжение между пластинами равно 5000 В. Чему равна электрическая
	емкость конденсатора?
7.	При исследовании зависимости заряда на q, 10 ⁻³ Кл ♣
' '	
	Constitution Residented of Improvement
	напряжения оыл получен изоораженный на рисунке
	график. Определите емкость конденсатора.
	0.2
	0 10 20 30 40 50 U.B
8.	0 10 20 30 40 50 U, B Конденсатор один раз подключают к источнику тока напряжением 20 В, другой раз —
0.	
	напряжением 40 В. Как соотносятся заряды, накопившиеся на пластине конденсатора,
	подключаемой к положительной клемме источника в первый раз и во второй?
9.	Плоский воздушный конденсатор отключили от источника тока, а затем увеличили
	расстояние между его пластинами. Что произойдет при этом с зарядом на обкладках
	конденсатора, электроемкостью конденсатора и напряжением на его обкладках?
10.	Плоский воздушный конденсатор зарядили и отключили от источника тока. Как
	изменится энергия электрического поля внутри конденсатора, если расстояние между
	пластинами конденсатора увеличить в 2 раза?
11.	Конденсатор подключен к источнику постоянного напряжения. Как изменится энергия
	электрического поля внутри конденсатора, если расстояние между обкладками
	конденсатора уменьшить в 2 раза, а площадь перекрытия увеличить в 3 раза?

Тест ХАРАКТЕРИСТИКИ ПРОЦЕССА ПРОТЕКАНИЯ ТОКА В ЦЕПИ

заряд проходит по каналу молнии? 2. Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работ 40 Дж. Вычислите отношение напряжений на концах первого и второго проводников. 3. Необходимо экспериментально проверить, зависит ли электрическое сопротивление круглого угольного стержня от его диаметра. Какие стержни		
 Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во втором проводнике при перемещении такого же заряда электрическое поле совершает работ 40 Дж. Вычислите отношение напряжений на концах первого и второго проводников. Необходимо экспериментально проверить, зависит ли электрическое сопротивление круглого угольного стержня от его диаметра. Какие стержни 	1.	Среднее время разрядов молнии равно $0,002$ с. Сила тока в канале молнии около 2^{10} А. Какой
втором проводнике при перемещении такого же заряда электрическое поле совершает работ 40 Дж. Вычислите отношение напряжений на концах первого и второго проводников. 3. Необходимо экспериментально проверить, зависит ли электрическое сопротивление круглого угольного стержня от его диаметра. Какие стержни		заряд проходит по каналу молнии?
40 Дж. Вычислите отношение напряжений на концах первого и второго проводников. 3. Необходимо экспериментально проверить, зависит ли электрическое сопротивление круглого угольного стержня от его диаметра. Какие стержни	2.	Перемещая заряд в первом проводнике, электрическое поле совершает работу 20 Дж. Во
3. Необходимо экспериментально проверить, зависит ли электрическое сопротивление круглого угольного стержня от его диаметра. Какие стержни		втором проводнике при перемещении такого же заряда электрическое поле совершает работу
сопротивление круглого угольного стержня от его диаметра. Какие стержни		40 Дж. Вычислите отношение напряжений на концах первого и второго проводников.
	3.	Необходимо экспериментально проверить, зависит ли электрическое 🖺 📙
имуно использореть или такой проверки?		сопротивление круглого угольного стержня от его диаметра. Какие стержни
нужно использовать для такой проверки:		нужно использовать для такой проверки?

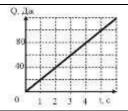
4. На рисунке изображены графики зависимости силы тока от приложенного напряжения для трех проводников с сопротивлениями R1, R2, R3. Сравните сопротивления проводников

5. Медная проволока, площадью поперечного сечения 1,5 мм2, имеет электрическое сопротивление 6 Ом. Вычислите длину проволоки.

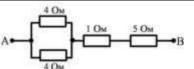

Тест СОЕДИНЕНИЕ ПРОВОДНИКОВ

Сопротивление каждого резистора на участке цепи, изображенном на рисунке, равно 3 Ом. Найдите общее сопротивление участка. 2. Чему равно общее сопротивление участка цепи, изображенного на рисунке, если $R_1 = 1 \, O_M$, $R_2 = 10 \, O_M$, $R_3 = 10 \ O_M, R_4 = 5 \ O_M?$ 3. электрической цепи вольтметр показывает напряжение 2 B, вольтметр V_2 – напряжение 0,5 B. Вычислите напряжение на лампе. 4. Через участок цепи течет постоянный ток I=10A. Какую силу тока показывает амперметр? Сопротивлением амперметра пренебречь. Два резистора сопротивлением $R_1=10$ Ом и $R_2=20$ Ом соединены последовательно. 5. Вычислите отношение напряжений на этих резисторах.

Тест ЗАКОН ОМА ДЛЯ ПОЛНОЙ ЦЕПИ

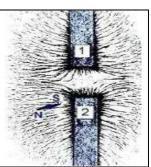

1. Как изменятся показания приборов, если к резистору в схеме, показанной на рисунке, параллельно подключить еще один резистор? Внутренним V сопротивлением источника тока пренебрегать нельзя, амперметр и вольтметр считать идеальными. 2. Как будут изменяться показания приборов при смещении движка реостата слева направо? Внутренним сопротивлением источника тока пренебрегать нельзя. Гальванический элемент с ЭДС 1,6 В и внутренним сопротивлением 0,3 Ом замкнут 3. проводником с сопротивлением 3,7 Ом. Определите силу тока в цепи. 4. В замкнутой цепи, состоящей из источника питания и резистора, течет постоянный ток I=0,5 А. ЭДС источника 3 В, его внутреннее сопротивление 2 Ом. Каково сопротивление резистора , который подключен к источнику?

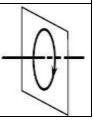
- 5. К аккумулятору с ЭДС 12 В и внутренним сопротивлением 1 Ом подключен реостат сопротивлением 3 Ом. Как изменится сила тока, протекающего через аккумулятор, если сопротивление реостата уменьшить в 3 раза?
- 6. В цепи, изображенной на рисунке, показания амперметра 0,5 A и вольтметра 4 В. Чему равна ЭДС источника, если его внутреннее сопротивление 1 Ом?



Тест РАБОТА ЭЛ ОКА. ЗАКОН ДЖОУЛЯ-ЛЕНЦА

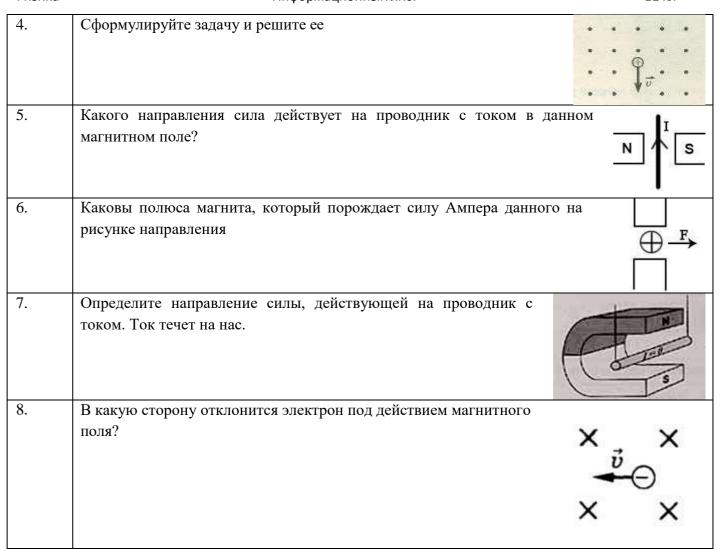
- 1. При силе тока в электрической цепи 0,3 А сопротивление лампы равно 10 Ом. Вычислите мощность электрического тока, выделяющаяся на нити лампы.
- 2. Сопротивление нагревательного элемента электрического чайника 20 Ом. Определите мощность тока, проходящего через нагревательный элемент при напряжении 220 В.
- 3. В резисторе сопротивлением 5 Ом течет постоянный ток. На рисунке приведен график зависимости количества теплоты, выделяемой в резисторе, от времени. Чему равна сила тока в резисторе?


4. Вычислите мощность, выделяемую в цепи если в неразветвленной части течет ток 1 А.


5. Спираль электроплитки сопротивлением 10 Ом включена в сеть с напряжением 220 В. Через какое время на этой плитке закипит вода массой 1 кг, если ее начальная температура составляла 20°C, а КПД процесса 80%?

Тест МАГНИТНОЕ ПОЛЕ

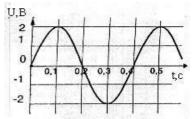
1. На рисунке представлена картина линий магнитного поля, полученная с помощью железных опилок от двух полосовых магнитов. Каким полюсам полосовых магнитов соответствуют области 1 и 2?


- 2. Что нужно сделать для того, чтобы изменить полюса магнитного поля катушки с током?
- 3. На рисунке изображена магнитная линия тока (в вертикальной плоскости), созданного прямым проводником. Укажите направление тока в проводнике

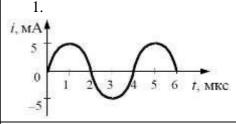
4.	На рисунке изображен проволочный виток, по которому течет электрический ток в направлении, указанном стрелкой. Виток расположен в горизонтальной плоскости. Нарисуйте магнитную линию, проходящую через центр витка.
5.	По контуру, изображённому на рисунке, проходит постоянный ток. Нарисуйте магнитную линию, проходящую через точку А. Укажите на ней направление.
6.	Изобразить как можно точнее силовые линии и полюса магнитного поля катушки с током
7.	Изобразить как можно точнее магнитные линии катушки с током
8.	Магнит создает вокруг себя магнитное поле. Где будет проявляться действие этого поля наиболее сильно?
9.	Можно ли пользоваться компасом на Луне для ориентирования на местности?
10.	Внутри стенового покрытия проложен изолированный провод. Как обнаружить местонахождения провода, не нарушая стенового покрытия?
11.	Как будут взаимодействовать между собой магниты N S N S

Тест СИЛА АМПЕРА. СИЛА ЛОРЕНЦА

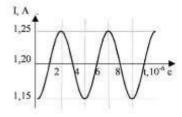
1.	Участок проводника длиной 10 см находится в магнитном поле с индукцией 50 мТл. Сила								
	Ампера при перемещении проводника на 8 см в направлении действия силы совершает								
	работу 0,004 Дж. Чему равна сила тока, протекающего по проводнику, если проводник								
	расположен перпендикулярно линиям магнитной индукции?								
2.	Протон и электрон влетают в однородное магнитное поле перпендикулярно вектору								
	магнитной индукции	с одинаковыми ск	оростями v. Вычис	лите отношение модулей сил,					
	действующих на них со стороны магнитного поля в этот момент времени.								
3.	Сформулируйте задачу и решите ее.								
	a) $\overset{I}{\downarrow}_{\tilde{F}}$	$\stackrel{\dot{F}}{{\longrightarrow}} I$ 6)	/ ⊗	z)					


Тест ЯВЛЕНИЕ ЭМИ

I CCI A	ивление эми								
1.	За 5 мс магнитный поток, пронизывающий контур, убывает с 9 до 4 мВб. Вычислите ЭДС								
	индукции в контуре.								
2.	Вычислите скорость изменения магнитного потока в соленоиде из 2000 витков при								
	возбуждении в нем ЭДС индукции 120 В.								
3.	Сколько витков должна содержать катушка площадью поперечного сечения 50 см ² ,								
	чтобы при изменении магнитной индукции от 0,2 до 0,3 Тл в течении 4 мс в ней								
	возбуждалась ЭДС 10 В?								
4.	Вычислите заряд, который пройдет через поперечное сечение витка, сопротивление								
	которого 0,03 Ом, при уменьшении магнитного потока внутри витка на 12 мВб?								
5.	В магнитное поле с индукцией 0,1 Тл помещен контур, выполненный в форме кругового								
	витка радиусом 3,4 см. Виток сделан из медной проволоки, площадь поперечного								
	сечения которой 1 мм ² . Нормаль к плоскости витка совпадает с линиями индукции поля.								
	Вычислите заряд, который пройдет через поперечное сечение витка при исчезновении								
	поля.								
6.	Вычислите ЭДС индукции в проводнике с длиной активной части 0,25 м,								
	перемещающемся в однородном магнитном поле с индукцией 8 мТл со скоростью 5 м/с								
	под углом 30 к вектору магнитной индукции.								


7. С какой скоростью надо перемещать проводник, под углом 60° к линиям индукции магнитного поля, чтобы в проводнике возбуждалась ЭДС индукции 1 В? Длина активной части проводника 1 м. Индукция магнитного поля равна 0,2 Тл

Тест ЭЛЕКТРОМАГНИТНЫЕ КОЛЕБАНИЯ


- 1. Изменение заряда конденсатора в колебательном контуре происходит по закону $q=10^{-4}\cos 20\pi t$. Чему равна частота электромагнитных колебаний в контуре? Постройте график зависимости заряда и силы тока от времени.
- 2. На рисунке приведен график изменения напряжения в электрической цепи с течением времени. Чему равен период колебаний напряжения?

3. На рисунке приведен график гармонических колебаний тока в колебательном контуре. Как изменится период колебаний, если катушку в этом контуре заменить на другую катушку, индуктивность которой в 4 раза меньше?

4. На рисунке показан график колебаний силы тока в колебательном контуре с антенной. Запишите уравнение зависимости силы тока от времени.

5. Колебательный контур состоит из катушки индуктивности и плоского конденсатора. Индуктивность катушки уменьшили от 36 мГн до 4 мГн. Как и во сколько раз изменилась в результате этого частота электромагнитных колебаний в контуре?

ЛАБОРАТОРНЫЕ РАБОТЫ

Лабораторная работа ИЗМЕРЕНИЕ СОПРОТИВЛЕНИЯ ПРОВОДНИКА

Цель: Измерить сопротивление проволочного резистора.

Приборы и материалы: источник тока; резистор; реостат, амперметр; вольтметр; ключ; соединенные провода

Порядок выполнения работы:

- 1. Соберите схему, состоящую из последовательно соединенных источника тока, резистора, реостата, амперметра и ключа.
- 2. Поставьте рычажок реостата в серединное положение.

- 3. Подключите параллельно резистору вольтметр.
- 4. Замкните схему и измерьте значения силы тока I и напряжения U на резисторе.
- 5. Передвиньте рычажок реостата в другое положение и повторно измерьте значения силы тока I и напряжения U на резисторе.
- 6. Рассчитайте сопротивление резистора в каждом случае по формуле:

$$R_{\rm np} = \frac{U}{I}$$

7. Вычислите относительную погрешность измерения сопротивления по формуле:

$$\varepsilon = \frac{\Delta U}{II} + \frac{\Delta I}{I}$$

8. Вычислите абсолютную погрешность измерения сопротивления по формуле:

$$\Delta R = R_{\rm np} \cdot \varepsilon$$

9. Результаты измерения сопротивления представьте в виде:

$$R = R_{\rm np} \pm \Delta R$$

- 10. Сравните сопротивления резисторов в опыте 1 и 2 с учетом погрешностей и сделайте вывод.
- 11. Результаты измерения и вычислений занесите в отчетную таблицу.

ОТЧЕТНАЯ ТАБЛИЦА

No	I	ΔI	U	ΔU	$R_{\rm np}$	ε	ΔR	$R = R_{\rm np} \pm \Delta R$
опыта	A	A	В	В	Ом	%	Ом	
1								
2								

Лабораторная работа ИЗМЕРЕНИЕ ЭДС И ВНУТРЕННЕГО СОПРОТИВЛЕНИЯ ИСТОЧНИКА ТОКА

Для того, чтобы в цепи постоянно шел ток необходимо устройство, которое будет перемещать заряды в направлении, противоположному направлению действия электрических сил, т.е. необходим источник тока. Источник тока создает в цепи электрическое поле в цепи. Внутри источника заряды движутся под действием сторонних сил.

ЭДС источника \mathcal{E} и r – внутреннее сопротивление – характеристики источника.

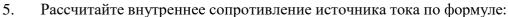
ЭДС в замкнутом контуре представляет собой отношение работы сторонних сил при перемещении заряда вдоль контура к заряду: $\mathcal{E} = \frac{A_{\text{стор}}}{a}$. Измеряется ЭДС в вольтах.

Сила тока в полной цепи равна отношению ЭДС цепи к ее полному сопротивлению, т.е.:

$$I = \frac{\mathcal{E}}{R+r}$$

закон Ома для полной цепи

где R - сопротивление внешней цепи.


При разомкнутой цепи напряжение на внешней части цепи примерно равно ЭДС источника. При замкнутом ключе: $\mathcal{E} = U + I \cdot r$

Цель: произвести измерение ЭДС и рассчитать внутреннее сопротивление источника. **Приборы и материалы:** источник тока; амперметр; вольтметр; реостат; соединительные провода; ключ.

Порядок выполнения работы:

Способ 1

- 1. Соберите электрическую цепь, состоящую из источника тока, реостата, амперметра и ключа.
- 2. Подсоедините вольтметр параллельно источнику тока.
- 3. Замкните цепь и снимите показания с амперметра и вольтметра.
- 4. Передвиньте рычажок реостата в иное положение и повторно снимите показания с амперметра и вольтметра.

$$r_{\rm np} = \frac{U_2 - U_1}{\frac{I}{1} - \frac{I}{2}}$$

6. Рассчитайте относительную погрешность измерения внутреннего сопротивления источника тока по формуле:

$$\varepsilon_r = 2\frac{\Delta U}{U_2 - U_1} + 2\frac{\Delta I}{I_1 - I_2}$$

7. Рассчитайте абсолютную погрешность измерения внутреннего сопротивления источника тока по формуле:

$$\Delta r = r_{\pi p} \cdot \varepsilon_r$$

8. Рассчитайте ЭДС источника тока по формуле:

$$\mathcal{E}_{\pi p} = U_1 + I_1 \cdot r_{\pi p}$$

9. Рассчитайте относительную погрешность измерения ЭДС источника тока по формуле:

$$\varepsilon_{\rm S} = \frac{\Delta U + \Delta I}{\frac{U}{1} + \frac{I}{1} \cdot r_{\rm np}}$$

10. Рассчитайте абсолютную погрешность измерения ЭДС источника тока по формуле:

$$\Delta \mathcal{E} = \mathcal{E}_{np} \cdot \varepsilon_{s}$$

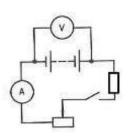
11. Результаты измерений представьте в виде:

$$\mathcal{E} = \mathcal{E}_{\pi p} \pm \Delta \mathcal{E}$$

$$r = r_{\rm np} \pm \Delta r$$

12. Результаты измерений и вычислений занесите в отчетную таблицу № 1.

Способ 2


- 1. Соберите электрическую цепь, состоящую из источника тока, реостата, амперметра и ключа.
- 2. Подсоедините вольтметр параллельно источнику тока.
- 3. Не замыкая ключа снимите показания с вольтметра. Это и есть ЭДС источника тока \mathcal{E}_{np}
- 4. Замкните цепь и снимите показания с амперметра и вольтметра.
- 5. Рассчитайте внутреннее сопротивление источника тока по формуле:

$$r_{\rm np} = \frac{\mathcal{E}_{\rm np} - U}{I}$$

6. Рассчитайте относительную погрешность измерения внутреннего сопротивления источника тока по формуле:

$$\varepsilon_r = 2 \frac{\Delta U}{\mathcal{E}_{np} - U} + \frac{\Delta I}{I}$$

7. Рассчитайте абсолютную погрешность измерения внутреннего сопротивления источника тока по формуле:

$$\Delta r = r_{\rm np} \cdot \varepsilon_r$$

8. Результаты измерений представьте в виде:

$$\mathcal{E} = \mathcal{E}_{\pi p} \pm \Delta \mathcal{E}$$

$$r = r_{\pi p} \pm \Delta r$$

- 9. Результаты измерений и вычислений занесите в отчетную таблицу № 2.
- 10. Сравните результаты измерений ЭДС и внутреннего сопротивления выполненные разными способами.

ОТЧЕТНАЯ ТАБЛИЦА № 1

<i>I</i> ₁ A	I ₂ A	<i>U</i> ₁ B	<i>U</i> ₂ B	\mathcal{E}_{np} B	r _{пр} Ом	Δ <i>U</i> Β	Δ <i>I</i> Α	$arepsilon_{s}$ B		Δ <i>r</i> Ом

ОТЧЕТНАЯ ТАБЛИЦА № 2

\mathcal{E}_{np}	I	U	$r_{ m np}$	ΔU	ΔI	$arepsilon_r$	Δr
В	A	В	Ом	В	A		Ом

Лабораторная работа ИЗУЧЕНИЕ ЯВЛЕНИЯ ЭЛЕКТРОМАГНИТНОЙ ИНДУКЦИИ

Цель: изучить явление ЭМИ

Приборы и материалы: источник тока; миллиамперметр; катушка с сердечником; магнит; ключ; соединенные провода; магнитная стрелка.

Порядок выполнения работы:

- 1. Подключите катушку к зажимам миллиамперметра
- 2. Введите магнит в катушку северным полюсом.
- 3. Оставьте магнит в катушке на некоторое время
- 4. Удалите магнит из катушки
- 5. Повторите действия п.2 4 с южным полюсом
- 6. Для каждого случая в отчетную таблицу запишите, возникал ли индукционный ток и его направление (отклонение стрелки миллиамперметра)
- 7. На основании наблюдений, сформулируйте вывод, при каком условии в катушке возникал индукционный ток
- 8. Нарисуйте схему из двух катушек на общем сердечнике. Первую катушку соедините с миллиамперметром, вторую катушку через реостат соедините с источником тока
- 9. Соберите эл цепь по нарисованной схеме
- 10. Замыкайте и размыкайте ключ во второй цепи. Наблюдайте возникновение индукционного тока в первой цепи.
- 11. Изменяйте силу тока во второй цепи с помощью реостата. Наблюдайте возникновение индукционного тока в первой цепи.
- 12. На основании наблюдений п.11-12 сделайте вывод

ОТЧЕТНАЯ ТАБЛИЦА

	Вводим магнит в катушку	Магнит покоится	Выводим магнит из
		относительно катушки	катушки
Северным			
полюсом			
мынжОІ			
полюсом			