Промежуточная аттестация по физике за 2 полугодие

Промежуточная аттестация по физике в 7 классе состоит из 3 частей:

- 1. Устное собеседование по вопросам
- 2. Решения задач в формате теста
- 3. Выполнения лабораторных задач

Время промежуточной аттестации – 90 мин

Структура работы

Задание		Время на	Форма проведения	Проверяемые умения
		выполнение		
		задания		
1.	Устное собеседование по вопросам	15 мин	Устный ответ по 5 вопросам из каждой темы на выбор учителя.	 Распознавать механические явления и объяснять на основе имеющихся знаний основные свойства или условия протекания этих явлений Описывать изученные свойства тел и механические явления, используя физические величины: путь, скорость, масса тела, плотность вещества, сила Распознавать тепловые явления и объяснять на базе имеющихся знаний основные свойства или условия протекания этих явлений: диффузия, изменении объема тел при нагревании (охлаждении), большая сжимаемость газов, малая сжимаемость жидкостей и твердых тел) Анализировать свойства тел, тепловые явления и процессы, используя основные положения атомно-молекулярного учения о строении вещества
				 Различать основные признаки изученных физических моделей строения газов, жидкостей и твердых тел
2.	Решение задач в формате теста	30 мин	Все задачи из предложенных в данном документе решены в тетради ученика. На промежуточной аттестации	 Анализировать ситуации практико-ориентированного характера, устанавливать в них проявление изученных физических явлений или закономерностей и применять имеющиеся знания для их объяснения Решать задачи, используя физические законы (закон сохранения энергии, принцип суперпозиции сил, закон Гука, закон Паскаля, закон Архимеда) и формулы, связывающие физические величины (путь, скорость, масса тела, плотность вещества, сила

			предлагается решить 1-2 задачи из темы (на выбор учителя)	 На основе анализа условия задачи выделять физические величины и формулы, необходимые для ее решения, проводить расчеты и оценивать реальность полученного значения физической величины
3.	Выполнение лабораторной работы	45 мин	Самостоятельное выполнение 3-х лабораторных работ на выбор учителя. Обучающийся имеет право пользоваться прилагаемыми в документе описаниями к л/р. Оборудование для л/р выдает учитель.	 Ставить эксперименты по исследованию физических явлений или физических свойств тел без использования прямых измерений; при этом формулировать проблему/ задачу опыта, собирать установку из предложенного оборудования, проводить опыт и формулировать вывод. Проводить прямые измерения физических величин: время, расстояние, масса тела, объем, сила Считывать показания приборов с их округлением до ближайшего штриха шкалы и записывать результаты измерений в виде равенства хизм = х ± Δх
ИТОГО 90 минут				

Оглавление

ВОПРОСЫ ДЛЯ СОБЕСЕДОВАНИЯ	9
Давление твердых тел	9
Давление газов	10
Давление жидкостей	10
Закон Паскаля	10
Закон Архимеда	10
Простые механизмы	10
Механическая работа. Мощность	11
ТЕСТЫ ПО ТЕМАМ	11
Давление твердых тел	11
Давление газа	13
Гидростатическое давление	13
Сообщающиеся сосуды	15
Атмосферное давление	17
Приборы для измерения давления	21
Гидравлический пресс	21
Архимедова сила	22
Плавание тел	24
Механическая работа. Мощность	24
Наклонная плоскость	26
Энергия	26
ЛАБОРАТОРНЫЕ РАБОТЫ	28
Измерение давления твердого тела на опору	28
Определение давления собственного тела на пол	
Наблюдение действия атмосферного давления	
Исследование выталкивающей силы	
Измерение работы при перемещении тела	
Измерение мощности при подъеме тела	
Измерение момента силы	
Изучение равновесия тела под воздействием нескольких сил	
110) 111111 publication form from the posterior intercontacting entitions	

вопросы для собеседования

Давление твердых тел

1. Необходимость введения величины "Давление"

- 2. Давление: определение, формула, единицы измерения в СИ, физический смысл.
- 3. Способы изменения давления. Применение.

Давление газов

- 1. Механизм возникновения давления газа на основе МКТ
- 2. От чего зависит давление газа. Объяснение на основе МКТ
- 3. Атмосфера. Атмосферное давление
- 4. Опыт Торричелли
- 5. Нормальное атмосферное давление (физическая атмосфера)
- 6. Приборы для измерения атмосферного давления. Устройство, принцип работы, недостатки и преимущества.
- 7. Внесистемные единицы измерения давления и их взаимосвязь.

Давление жидкостей

- 1. Гидростатическое давление. Природа
- 2. Гидростатическое давление. Формула (вывод, анализ)
- 3. "Гидростатический парадокс". Сравнить силу давления на дно и вес жидкости

Закон Паскаля

- 1. Описать опыт, устанавливающий закон Паскаля
- 2. Формулировка закона Паскаля
- 3. Примеры применения закона Паскаля
- 4. Сообщающиеся сосуды. Примеры
- 5. Свободная поверхность однородной жидкости в сообщающихся сосудах. Рисунок. пояснение
- 6. Свободная поверхность разнородных жидкостей в сообщающихся сосудах. Рисунок. Зависимость высот столбов жидкостей от плотности этих жидкостей
- 7. Гидравлическая машина. Рисунок. Устройство. Принцип действия
- 8. Выигрыш в силе (для гидравлического пресса) при наличии и отсутствии трения

Закон Архимеда

- 1. Причины появления выталкивающей силы. Рисунок. Вывод формулы
- 2. Способы определения выталкивающей силы
- 3. Формулировка закона Архимеда
- 4. Условие плавания тел
- 5. Ареометр. Устройство. Принцип действия
- 6. Плавание судов. Осадка судна. Ватерлиния. Водоизмещение судна
- 7. Справедливость закона Архимеда для газов. Рисунок. Доказательство
- 8. Воздухоплавание. Подъемная сила

Простые механизмы

- 1. Определение простых механизмов.
- 2. Виды простых механизмов.
- 3. Плечо силы: определение, обозначение, единицы измерения
- 4. Момент силы: что характеризует, определение, обозначение, единицы измерения.

- 5. Рычаг: определение, выигрыш в силе, условие равновесия.
- 6. Приведите примеры рычагов в технике, быту и природе.
- 7. Что такое блок?
- 8. Классификация блоков.
- 9. Неподвижный блок: определение, назначение, выигрыш в силе.
- 10. Подвижный блок: определение, назначение, выигрыш в силе.
- 11. Золотое правило механики.
- 12. Коэффициент полезного действия простых механизмов: определение, формула, единицы измерения, способы увеличения.

Механическая работа. Мощность

- 1. Механическая работа: определение, обозначение, единицы измерения.
- 2. Приведите случаи, когда работа равна нулю.
- 3. Положительна и отрицательна работа.
- 4. Определение единицы работы 1 Дж.

поставить на основание? **А.** Оловянный **В.** Латунный

5. Мощность: свойство тела, которое характеризует, определение, обозначение, единицы измерения, прибор для измерения.

ТЕСТЫ ПО ТЕМАМ

Давление твердых тел

1.	Давление тела на поверхность зависит от
	А. модуля силы и от площади поверхности, перпендикулярно которой действует сила
	В. модуля силы и не зависит от площади поверхности, на которую действует сила
	С. площади поверхности, перпендикулярно которой действует сил
	D. не зависит ни от силы, ни от площади
2.	Брусок в форме прямоугольного параллелепипеда положили на стол сначала узкой гранью (1),
	а затем — широкой (2). Сравните силы давления ($F_1 u F_2$) и давления ($p_1 u p_2$), производимые
	бруском на стол в этих случаях.
	A. $F_1 < F_2$; $p_1 < p_2$
	B. $F_1 = F_2$; $p_1 < p_2$
	C. $F_1 = F_2$; $p_1 > p_2$
	D. $F_1 = F_2$; $p_1 = p_2$
3.	Три тела, имеющие одинаковую площадь опоры положили на стол.
	Какое из тел оказывает наименьшее давление на стол?
4.	Два сплошных цилиндра равной высоты имеют одинаковые массы. Один цилиндр сделан из

олова, другой – из латуни. Какой из цилиндров окажет большее давление на стол, если его

С. Цилиндры оказывают одинаковое давление **D.** Для ответа на вопрос недостаточно данных

5.	При каком условии давление, производящее брусками на стол, будут одинаковым.
6.	В стоящую на столе вазу массой 0,4 кг поставили цветы массой 0,2 кг и налили 1 л воды. Во сколько раз увеличилось давление, оказываемое вазой на стол? А. В 4 раза В. В 3 раза С. В 2,5 раза D. В 1,7 раза
7.	Мальчика массой 40 кг везут на санках, площадь полозьев которых 0,06 м². Какое давление они оказывают на снег? Вес санок 20 Н. А. 24 Па В. 240 Па С. 700 Па D. 7000 Па
8.	Определите давление, оказываемое на пол шкафом, вес которого 800 H, а площадь поверхности одной его ножки 25 см². А. 32 кПа В. 0,8 кПа С. 8 кПа D. 80 кПа
9.	Давление тела на опору можно уменьшить, если
10.	Резиновый шарик, надутый воздухом, летом опускают в озеро на глубину 1 м. Через некоторое время обнаруживают, что диаметр шара уменьшился на 50 %. Какие из гипотез для объяснения этого явления требуется проверять экспериментально?
11.	От чего зависит глубина, на которую гвоздь войдет в дерево за один удар молотка? Предложите несколько вариантов ответа: а) от силы удара; б) только от площади острия; в) от силы удара, площади острия и твердости дерева; г) от давления гвоздя на доску и твердости дерева.
12.	Одинаковые ли давления производят на стол кирпичи.
13.	Одинаковые ли давления производят на стол бруски равной массы.

Лавление газа

<u>Давлен</u>	ие газа
1.	В сосудах разного объема заключен один и тот же газ. Его массы в сосудах одинаковы. В каком из них давление наибольшее? № 1 № 2 № 3
2.	В одинаковых сосудах находятся разные массы одного и тог же газа. В каком из них плотность
	газа наибольшая, в каком — наибольшее давление? А. №2, №3 В. №2, №1 С. №2, №2 D. №3, №2
3.	В двух одинаковых герметичных сосудах находятся равные массы одного и того же газа. Однако
3.	измерение давления в них показало, что в одном сосуде давление больше, чем в другом, причем ошибки в измерениях не было. В чем может быть причина такого результата? А. в измерении давления в разных частях сосуда — вверху и у дна В. в различии температуры газа в сосудах С. в неодновременности измерений давления в этих сосудах D. не хватает данных для ответа
4.	
4.	Под колокол воздушного насоса поместили завязанный резиновый шар с небольшим количеством воздуха. При откачивании воздуха из-под колокола шар раздувается. Изменяется ли при этом давление внутри шара? А. Увеличивается В. Уменьшается С. Остаётся неизменным
	D. Остаётся неизменным, равным атмосферному

Гидростатическое давление

1.	Резиновый шарик, надутый воздухом, летом опускают в озеро на глубину 1 м. Через		
	некоторое время обнаруживают, что диаметр шара уменьшился на 50 %. Какие из гипотез		
	для объяснения этого явления требуется проверять экспериментально?		
	1) Температура воды ниже температуры воздуха.		
	2) Давление на стенки шара возросло.		
	3) Оболочка шара стала менее растяжимой.		
	А. только 1		
	В. только 2		
	С. только 3		
	D. 1 и 2		
2.	В сосуды различной формы налита одна и та же жидкость. Высота		
	уровня жидкости во всех сосудах одинакова. В каком из		
	сосудов давление на дно наименьшее?		

3.	Нижние отверстия стеклянных трубок, наполненных водой так, как показано на рисунке, затянуты тонкой резиновой пленкой. Какая из пленок должна прогнуться меньше всего? А. №1 В. №2 С. №3
	D. Все прогнутся одинаково
4.	В каком из сосудов давление жидкости на уровне АВ наименьшее? (Поверхности жидкостей расположены на одном уровне.) А. №1 В. №2 С. №3 D. №4
5.	В два сосуда, показанные на рисунке, налили по 1 л воды. В каком из
6.	них резиновое дно прогнется больше? А. №1 В. №2 С. прогиб будет одинаков D. ничего определенного сказать нельзя
0.	Какая жидкость и на сколько больше давит на дно сосуда? А. керосин на 180 Па В. керосин на 1,8 кПа С. эфир на 180 Па D. эфир на 1,8 кПа
7.	Каково давление воды на стенку сосуда в точках К и М? А. $P_K = 100 \ \Pi a, P_M = 300 \ \Pi a$ В. $P_K = 1 \ \kappa \Pi a, P_M = 3 \ \kappa \Pi a$ С. $P_K = 10 \ \kappa \Pi a, P_M = 1 \ \kappa \Pi a$
8.	Пластинка №1 находится на глубине 5 см от поверхности воды, а пластинка №2 на расстоянии 5 см от дна сосуда. На какую из них давление воды больше? А. №1 В. №2 С. давления одинаковы D. ничего определенного сказать нельзя
9.	Какая сила действует на дно сосуда площадью 500 см ² , если налитая в него жидкость производит на дно давление, равное 800 Па? А. 80 Н В. 400 Н

	C. 40 H
	D. 4 H
10.	Определите силу, действующую на дно сосуда площадью 400 см ² , когда в него налит
	керосин до уровня, отстоящего от дна на 15 см.
	A. 4800 H
	B. 480 H
	C. 48 H
	D. 4,8 H

Сообщающиеся сосуды

Соооща	иющиеся сосуды
1.	В каком колене U-образной трубки находится менее плотная жидкость?
2.	В открытом сосуде 1 находится вода, а в открытом сосуде 2 - керосин. Если открыть кран К, то
3.	Укажите среди изображенных здесь сосудов сообщающиеся
	сосуды. № 1 № 2 № 3
4.	На каком уровне установятся поверхности однородной жидкости в
	сосудах, если наливать ее в отверстие левого сосуда?
5.	В каких из этих сосудов поверхность воды будет находиться на одном и том же уровне?
6.	В какой паре сообщающихся сосудов - №1 или №2 — находится разнородная жидкость? В какое колено налита менее плотная жидкость?

7. В широкую U-образную трубку с вертикальными прямыми коленами налиты неизвестная жидкость плотностью ρ_1 и вода плотностью $\rho_2 = 1,0.10^3$ кг/м³. На рисунке b = 10 см, h = 24 см, H =Η 30 см. Плотность жидкости р1 равна 8. Свободной поверхностью жидкости называют... А. Поверхность, которая не соприкасается со стенками сосуда. Б. Поверхность, которая соприкасается со стенками сосуда. В. Любая поверхность жидкости. 9. В каком из сообщающихся сосудов, 1, 2, 3, указано правильное расположение уровней жидкости. А. 1. Б. 2. В. 3. Какой из сосудов 1, 2, 3, можно заполнить жидкостью доверху? 10.

Закон Паскаля

Как передают жидкости и газы то внешнее давление, которое на них оказывают?
 А. в направлении действующего на них давления
 В. в направлении дна сосуда, в котором находятся
 С. по всем направлениям, причем одинаково
 D. это давление не передается
 Каково добавочное (вследствие действия поршня) давление газа на площадки
 №1 и №2, если давление поршня равно 150 Па?
 А. №1 – 300 Па, №2 – 150 Па
 В. №1 – 150 Па, №2 – 0 Па
 С. №1 – 150 Па, №2 – 150 Па
 D. №1 – 150 Па, №2 – 150 Па

3. Определите добавочные давления, производимые поршнем, на площадки №1 и №2. Поршень, поднимаясь, оказывает давление, равное 100 Па. А. на обе площадки оно одинаково и равно 100 Па В. в этом случае добавочное давление не передается (равно 0) **C.** №1 – 100 Π a, №2 –50 Π a **D.** N₂1 – 100 Πa, N₂2 – 0 Πa Какие изображенные здесь опыты свидетельствуют о 4. действии закона Паскаля? А. №1 и №2 **B.** №1 и №3 С. №1 и №4 **D.** №3 и №4 Какая сила создает давление внутри жидкости и газа? 5. А. сила трения В. сила взаимодействия между молекулами С. сила упругости **D.** сила тяжести 6. Найдите давление воды на пластинку К снизу. **A.** 6 κΠa **B.** 0,6 κΠa **С.** 4 кПа 20 см **D.** 0,4 κ Πa 7. В воду опущен кубик, ребро которого 5 см, так, что его верхняя грань находится на глубине 50 см. Какое давление оказывает вода на верхнюю и нижнюю грани кубика? А. 5 кПа; 5,05 Па В. 5 кПа; 5,25к Па С. 5 кПа; 5,1 кПа **D.** 5 κΠα; 5,5 κΠα 8. На сколько давление машинного масла на верхнюю грань бруска меньше, чем на нижнюю? **A.** 1,8 κΠa 10 см **B.** 2,7 κΠa 40 см С. 0,9 кПа

Атмосферное давление

D. 9 кПа

Паскаль создал водяной барометр, аналогичный ртутному барометру. Какова примерно высота столба воды в этом барометре?

 А. 76 см
 В. 1 м
 С. 10 м
 О столб воды мог быть любым

 Можно ли в кабине космического корабля в условиях невесомости пользоваться пипеткой?

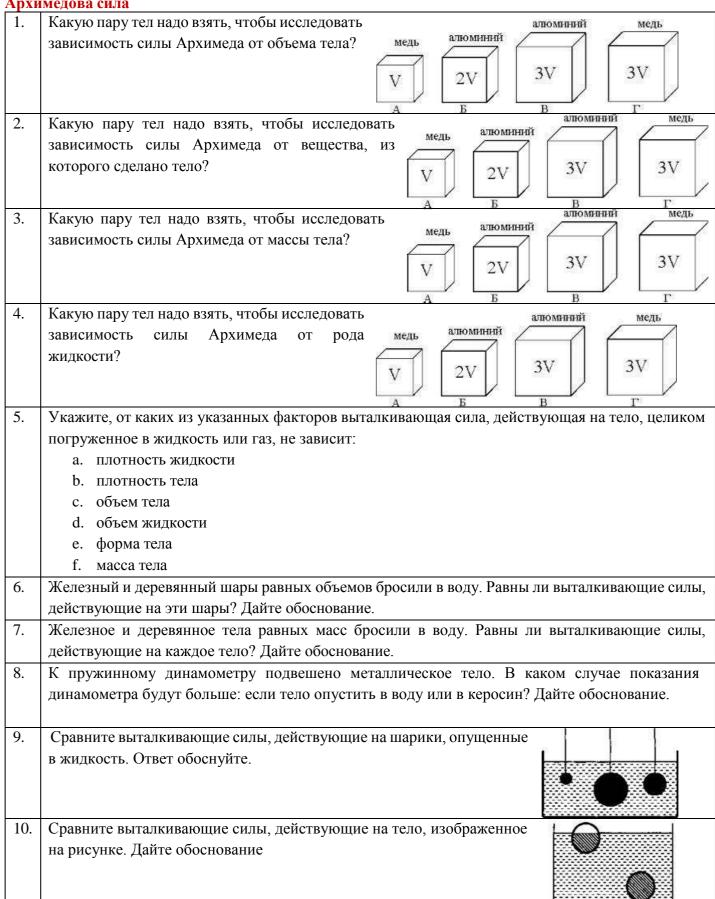
 А. Можно.

	В. Нельзя.				
	С. В зависимости от рода жидкости				
	D. Ничего определенного сказать нельзя				
3.	Из бутылки выкачали воздух и закрыли пробкой, затем горлышко бутылки опустили в воду. При				
	открывании пробки вода стала подниматься вверх и заполнила бутылку. Почему?				
	А. вода обладает свойством заполнять пустое пространство.				
	В. вода поднимается вверх, потому что атмосферное давление было больше давления				
	разряженного воздуха в бутылке.				
	С. пустая бутылка втягивает воду				
4.	Почему вода поднимается вслед за поршнем, если поршень поднимать вверх?				
	А. молекулы воды притягиваются молекулами поршня;				
	В. поршень своим движением увлекает воду;				
	С. при подъёме поршня между ним и водой образуется безвоздушное				
	пространство. В это пространство под давлением наружного воздуха и				
	устремляется вода;				
	D. вода обладает свойством заполнять пустое пространство.				
5.	Известно, что газ, находящийся в баллоне, оказывает на его стенки давление, равное 250 кПа.				
	Каково его давление на дно баллона, площадь которого 250 см ² ?				
	А. 1 кПа				
	В. 10 кПа				
	С. 625 кПа				
	D. 250 кПа				
6.	Известно, что масса 1 м^3 воздуха на уровне моря при 0^0 С равна $1,29 \text{ кг}$. Каковы вес этого объема				
	воздуха и его плотность?				
	А. 0,129 H; 1,29 кг/м ³				
	В. 1,29 H; 1,29 кг/м ³				
	С. 12,9 H; 0,129 кг/м ³				
	D. 12,9 H; 0,129 кг/м ³				
7.	Вычислите вес воздуха в помещении, объем которого 60 м ³ .				
	A. 77,4 H				
	B. 774 H				
	C. 7,74 H				
	D. 77,4 H				
8.	Какова причина существования атмосферного давления?				
	А. подвижность молекул				
	В. взаимодействие молекул				
	С. вес воздуха				
	D. трение молекул о землю				
9.	Как изменяется плотность воздуха с изменением высоты над поверхностью Земли?				
	А. увеличивается при подъеме				
	В. не изменяется				
	С. уменьшается с возрастанием высоты				
	D. нет однозначного ответа				
10.	Почему атмосферное давление нельзя рассчитать по формуле гидростатического давления?				
	•				

А. потому что плотность воздуха очень мала **В.** из-за того, что h – слишком большая величина: несколько тысяч километров ${\bf C.}$ из-за размытости границы воздушной оболочки (неопределенности значения h) и изменения плотности воздуха с высотой **D.** рассчитать по формуле можно 11. Как изменяется уровень ртути в трубке Торричелли при изменении атмосферного давления? **А.** не изменяется В. повышается при увеличении атмосферного давления и понижается при его уменьшении С. понижается в случае увеличения атмосферного давления и повышается, когда оно уменьшается **D.** среди ответов нет правильного 12. Атмосферное давление сегодня выше нормального атмосферного давления на 10 мм.рт..ст. Какой высоты столбик ртути в трубке Торричелли будет при этом лавлении? **А.** 770 мм **B.** 750 mm **C.** 760 мм **D.** 780 мм 13. Столбик ртути в трубке Торричелли (рис.а) опустился (рис.б). Как изменилось атмосферное давление? На сколько оно изменилось? 755 мм А. уменьшилось на 10 мм.рт.ст. 750 мм В. увеличилось на 5 мм.рт.ст. С. уменьшилось на 5 мм.рт.ст. **D.** увеличилось на 10 мм рт. ст. Атмосферное давление измеряют прибором, название которого... 14. А. динамометр В. барометр С. линейка **D.** термометр Почему в барометрах, основанных на трубке Торричелли, используется ртуть – ядовитое 15. вещество, а не вода? А. потому что ртуть не прозрачна и ее столбик хорошо виден в стеклянной трубке В. потому что Торричелли проводил опыты с ртутью С. потому что у ртути наибольшая среди жидкостей плотность и для барометра нужна стеклянная трубка длиной порядка 1 м, а если использовать воду, то понадобится трубка более 10 м 16. Почему не выливается вода из опрокинутой вверх дном бутылки, если горлышко её погружено в воду? А. Действует атмосферное давление снизу вверх В. Действует сила тяжести. С. Действует выталкивающая сила. Резиновый шар надули воздухом и завязали. Как изменится объём и давление воздуха внутри 17. шара при повышении атмосферного давления? А. Объём и давление не изменятся.

	В. Объём и давление увеличатся.
	С. Объём и давление уменьшатся.
	D. Объём уменьшится, давление увеличится
18.	Если на весах сначала взвесить резиновый шар без воздуха, затем надуть и снова взвесить, то
	какой будет разность показаний весов?
	А. Больше веса воздуха в шаре.
	В. Меньше веса воздуха в шаре. авна весу воздуха в шаре.
	С. Ничего определенного сказать нельзя
19.	Атмосферное давление на пол комнаты 100 кПа. Какое давление атмосферного воздуха на стены
	и потолок комнаты?
	 4. 100 кПа на стены и потолок.
	В. 100 кПа на стены, на потолок 0.
	С. 0 на стены, на потолок 100 кПа
	D. Ничего определенного сказать нельзя
20.	Барометр показывает давление 1013 гПа. Определите, какая высота столба ртути соответствует
	этому давлению.
	А. 780 мм
	В. 101,3 мм
	С. 133 мм
	D. 760 mm
21.	Листок бумаги, плотно прилегающий к стенкам перевёрнутого стакана с водой, не даёт воде
	вылиться. Какова сила давления воздуха на воду, если площадь листка 0,02 м ² ? (Атмосферное
	давление $10^5 \Pi a$)
	A. 100 H
	B. 200 H
	C. 2000 H
	D. 500 H
22.	С какой силой давит атмосфера на пол в классе площадью 40 м ² в тот день, когда давление
	воздуха равно 750 мм.рт.ст.?
	А. $4 \cdot 10^3$ кН
	В. 4·10 ⁴ кН
	\mathbf{C} . $10^3 \mathrm{кH}$
	D. 10^4 kH
23.	Каким станет атмосферное давление при подъеме на высоту 1200 м, если на земле оно равно 780
	мм.рт.ст.?
	А. 660 мм.рт.ст.
	В. 680 мм.рт.ст.
	С. 700 мм.рт.ст.
	D. 720 мм.рт.ст.
24.	На какой высоте атмосферное давление равно 725 мм.рт.ст., если на земле оно равно 755
	мм.рт.ст.?
	А. 300 м
	В. 340 м
	С. 360 м

	D. 380 м
25.	На поверхности Земли атмосферное давление равно 750 мм.рт.ст., а на вершине радиомачты 745
	мм.рт.ст. Определите ее высоту.
	А. 45 м
	В. 50 м
	С. 55 м
	D. 60 м
26.	Рассчитайте силу, с которой воздух давит на поверхность стола, длина которого 1,2 м, ширина
	0.6 м, атмосферное давление принять равным 10^5 Па.
	А. 76 кН
	B. 72 κH
	С. 68 кН
	D. 560 H
27.	На какую наибольшую высоту можно поднять при давлении 101300 Па поршневым насосом
	нефть. Плотность нефти равна 800 кг/м ³ ?
	А. 13,3 м
	В. 12,2 м
	С. 12,7 м
	D. 15,6 м
28.	Какая сила давления воздуха действует на книгу, лежащую на столе, при нормальном
	атмосферном давлении, если площадь поверхности книги 300 см ² ? Почему сравнительно легко
	можно поднять книгу со стола?
29.	Определите, с какой силой давит воздух на крышу дома длиной 20 м и шириной 50 м при
	нормальном атмосферном давлении.


Приборы для измерения давления

Определите давление газа в колбе, соединенной с ртутным манометром. Атмосферное давление 80 см рт. ст. Решить двумя способами: в системе СИ и в см рт. ст.
 Определите давление воды и атмосферы на дно озера глубиной 10 м. Атмосферное давление нормальное

Гидравлический пресс

1. Площадь меньшего поршня гидравлического пресса 4 см², а большего— 100 см². На меньший поршень действует сила 200 Н. Найдите, какой груз может поднять больший поршень. Трение не учитывать.

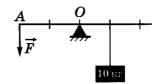
Архимедова сила

11									
11.	Сравните выталкивающие си	,		в масло стальной	И				
10	алюминиевый шарики одинаког								
12.	рисунке. Ответ обоснуйте.								
13.	Какое заключение можно сделать о величине архимедовой силы на Луне, где сила тяжести в шесть раз меньше, чем на Земле?								
14.	Сравните выталкивающие сил обоснуйте.		самолет на высот	е 2 км и 10 км. Отве	T				
15.	На весах уравновешены два шарика, 1 и 2. Нарушится ли равновесие весов, если убрать сосуд с жидкостью? Ответ обоснуйте.								
16.	Вычислите архимедову силу, действующую на деревянный брусок длиной 2см, шириной 5 см, высотой 18см, если он на 2/3 своего объема погрузили в спирт.								
17.	Сила Архимеда, действующая Определите объем этого шара.			ій шар, равна 2,5 кН	Ī.				
18.	На тело объемом 2 дм ³ при полн какая это жидкость?	ом погружении в жи	дкость действует вы	италкивающая сила 18H	[.				
19.	Весы уравновесили на ри Нарушиться ли равновесие на дайте обоснование.	исунке «а». а) рисунке «б»?	Вода	б) Масло					
20.	Деревянный брусок перенесли	из волы в керосин		речисленные в таблиц	<u>—</u>				
	величины? Поставь знак «+» в	-		P monda	•				
	Физическая величина	Увеличивается	Уменьшается	Не изменяется					
	Масса бруска								
	Вес бруска								
	Масса керосина								
	Объем бруска								
	Выталкивающая сила,								
	действующая на брусок								
	Вес бруска								
	Плотность дерева								
	Плотность керосина								
	Сила давления на дно сосуда								
	Давление на дно сосуда								

Плавание тел

ПЛАВ	зание тел
1.	Три одинаковых по размеру шарика, 1, 2, 3, погружены в жидкость. На какой из шариков действует наибольшая выталкивающая сила?
2.	Тело объемом 10 дм ³ имеет массу 3 кг. Будет ли плавать это тело в керосине?
3.	Тело массой 5 кг при полном погружении в воду вытесняет 6,5 кг этой жидкости. Утонет это тело или нет?
4.	Плиту массой 1,3 т поднимают со дна озера. Какую при этом необходимо приложить силу, если объем плиты 0,5 м ³ ?
5.	Длина прямоугольной баржи 4 м, ширина 2 м. Определите вес помещенного на баржу груза, если после нагрузки она осела на 0,5 м.
6.	После разгрузки баржи ее осадка в реке уменьшилась на 60 см. Определите массу снятого с нее груза, если площадь сечения баржи на уровне воды 240 м ² .
7.	Два одинаковых кубика погружены в сосуды с жидкостями. Сравните плотности жидкостей в сосудах 1 и 2.
8.	Брусок объемом 80 см ³ плавает на поверхности воды. Определите объем надводной части бруска, если его масса 32 г.
9.	Плот связан из 20 сосновых бревен. Объем каждого бревна 0.8 м ³ . Можно ли на этом плоту переправить груз массой 10 т?
10.	Сколько весит в воде алюминиевая деталь массой 135 г и объемом 50 см ³ ?

Механическая работа. Мощность


MICAAII	ическая работа. Мощноств
1.	По гладкому горизонтальному льду катится стальной шарик. Работа
	А. равна произведению модуля силы на пройденный путь
	В. равна нулю
	С. равна произведению модуля силы на пройденный путь, взятому со знаком минус
	D. зависит от скорости движения тела
2.	Мальчик пытается сдвинуть шкаф, но ему это не удается. Работа
	А. равна произведению модуля силы на пройденный путь
	В. равна нулю
	С. равна произведению модуля силы на пройденный путь, взятому со знаком минус
	D. зависит от скорости движения тела
3.	Если вектор силы перпендикулярен вектору скорости тела, то работа этой силы
	А. равна произведению модуля силы на пройденный путь
	В. равна нулю
	С. равна произведению модуля силы на пройденный путь, взятому со знаком минус
	D. зависит от скорости движения тела
4.	Автомобиль подъехал к перекрестку и остановился. Работа силы трения
	А. равна произведению модуля силы на пройденный путь

	В. равна нулю								
	<u> </u>	, ,	і путь, взятому со знаком минус						
	D. зависит от скорост								
5.			вершает двигатель при перемещении						
	лодки на 9 м по направлен	ию действия силы?							
	А. 8100 кДж								
	В. 8,1 кДж								
	С. 100 Дж								
	D. 0,1 кДж								
6.	Какую работу совершает двигатель мощностью 3 кВт за 5 с?								
	А. 15 Дж								
	В. 15 кДж								
	С. 600 Дж								
	D. 60 Дж								
7.	Выразите мощность, равну	ую 500 000 Вт и 2 МВт, в килог	ваттах.						
	А. 50 кВт и 200 кВт								
	В. 50 кВт и 2000 кВт								
	С. 500 кВт и 200 кВт								
	D. 500 кВт и 2000 кВт								
8.	Переведите мощность, равную 350 Дж/с и 0,75 Мвт, в ватты.								
	А. 350 Вт и 750 Вт								
	В. 350 Вт и 750000 Вт								
	С. 350 Вт и 7500 Вт								
	D. 35 Вт и 750 Вт								
9.	Электропила мощностью 1	1600 Вт произвела работу, равн	ную 960 кДж. Сколько времени она						
	пилила бревна?								
	А. 5 мин								
	В. 10 мин								
	С. 1 мин								
	D. 100 мин								
10.	Человек весом 600 Н подн	имается по вертикальной лест	нице на 3 м за 2 с. Какова мощность						
	этого человека во время по	одъема?							
	А. 36000 кВт								
	В. 36 кВт								
	С. 900 кВт								
	D. 0,9 κΒτ								
11.	Каждому положению из ст	голбика 1 приведи в соответств	вие положение из столбиков 2 и 3.						
	Ответ запишите в виде чер	едования цифр и буква							
	столбик 1	столбик 2	столбик 3						
	Название величины	Обозначение величины	Единицы измерения величины						
	1. работа	a. F	І. Вт						
	2. сила	b. t	II. c						
	3. расстояние	c. N	III. M						
	4. мощность	d. A	IV. H						
L	Щ								

	5. время	e. s	V. Дж
12.	Один из самых мощных в	мире водопадов – Ниагарский	– низвергается с уступа высотой 50м.
	Оцените, какой мощности течение примерно 3,2 с.	ю обладает каждый кубометр	воды этого водопада, падающий в
13.	Вычислите работу, соверш	енную при подъеме мраморно	й плиты объемом 1,2 м ³ на высоту 16
	м?		

РЫЧАГ

1) Какая сила должна быть приложена к левому концу рычага в точке А, чтобы рычаг находился в равновесии? Масса груза 10 кг.

2) Длина меньшего плеча рычага 5 см, большего 30 см. На меньшее плечо действует сила 12 Н. Какую силу надо приложить к большему плечу, чтобы уравновесить рычаг? (Сделайте рисунок. Весом рычага пренебречь.)

Наклонная плоскость

- 1) Для подъема по наклонной плоскости груза массой 200 кг была приложена сила 250 H. Высота наклонной плоскости 1,5м, длина 15м. Определите КПД этой наклонной плоскости.
- 2) Высота наклонной плоскости 1 м, а длина 15 м. Для подъема по ней груза весом 50 Н потребовалась сила 1Н. Определите КПД этой наклонной плоскости.
- 3) Определите высоту наклонной плоскости длиной 12м, если для подъема по ней груза весом 2000Н потребовалась сила 250Н. КПД наклонной плоскости 80%.
- 4) Изобразите на рисунке наклонную плоскость, которая при длине 8 м дает выигрыш в силе в 4 раза.

Энергия

Juchi							
1.	Энергия – это физическая величина, показывающая						
	А. как велика совершенная работа						
	В. какую работу может совершить тело						
	С. как мала совершенная работа						
	D. каким образом совершается работа						
2.	Энергия тела тем больше, чем						
	А. большее давление оно производит						
	В. больше его размеры						
	С. большую работу оно может произвести						
	D. чем масса тела больше						
3.	Изменение энергии тела равно						
	А. совершенной им работе						

	В. изменению скорости тела
	С. изменению действующей на него силы
	D. развиваемой им мощности
4.	Потенциальной энергией обладает
	А. любое тело
	В. тело, которое движется
	С. тело, которое покоится
	D. деформированное тело
5.	Кинетической энергией обладает
	А. любое движущееся тело
	В. тело, которое движется равномерно
	С. деформированное тело
	D. поднятое над какой-либо поверхностью тело
6.	Кинетическая энергия шара массой 500 г, катящегося по траве со скоростью 10 м/с равна
	А. 2,5 кДж
	В. 25 кДж
	С. 2,5 Дж
	D. 0,025 кДж
7.	Какими изменениями энергии сопровождаются различные физические явления?
	А. превращениями одного вида энергии в другой
	В. передачей энергии от одного тела к другому
	С. изменений энергии не происходит
	D. среди ответов нет верного
8.	Потенциальная энергия упруго деформированной пружины жесткостью 100 Н/м,
	растянутой на 10 см равна
	А. 0,5 Дж
	В. 5 Дж
	С. 500 Дж
	D. 5000 Дж
9.	Для того, чтобы увеличить потенциальную энергию тела в 4 раза, надо массу тела
	увеличить в
	A. 8 pa3
	B. 4 pasa
	C. 2 pasa
	D. $\sqrt{2}$ pas
10.	Для того, чтобы увеличить потенциальную энергию деформированного тела в 4 раза, надо
	деформацию тела увеличить в
	A. 8 pa3
	B. 4 pasa
	C. 2 pasa
	D. $\sqrt{2}$ pas

ЛАБОРАТОРНЫЕ РАБОТЫ

Измерение давления твердого тела на опору

Цель: убедиться, что результат действия силы на тело зависит от площади той поверхности, на которую она действует.

Приборы и материалы: динамометр; линейка измерительная; брусок деревянный Порядок выполнения работы:

- 1. Измерьте весь бруска F, подвесив его к крючку динамометра.
- 2. Измерьте длину a, ширину b и высоту c бруска.
- 3. Вычислите площади различных граней бруска: $S_1 = a \cdot b$, $S_2 = a \cdot c$, $S_3 = b \cdot c$

4. Вычислите давление, которое производит брусок этими гранями:
$$p_{_1} = \frac{F}{S_1}, \quad p_{_2} = \frac{F}{S_2}, \quad p_{_3} = \frac{F}{S_3}$$

5. Результаты измерений занесите в отчетную таблицу:

ОТЧЕТНАЯ ТАБЛИЦА

а, м	<i>b</i> ,	C , M	<i>F</i> , H	S_1 , M^2	S_2 , M^2	S_3 , M^2	<i>p</i> ₁ Па	<i>p</i> ₂ Па	p_3 Па

Определение давления собственного тела на пол

Цель: рассчитать давление собственного тела на пол стоя и при ходьбе

Приборы и материалы: лист бумаги в клетку; карандаш; весы напольные

Порядок выполнения работы:

- 1. Измерьте массу собственного тела с помощью напольных весов.
- 2. Рассчитайте вес силу, с которой человек давит на пол по формуле: P = mg
- 3. Поставьте ногу на лист в клетку и очертите контур ноги карандашом.
- 4. Сосчитайте количество клеток N в обведенном контуре.
- 5. Рассчитайте площадь опоры по формуле: $S = N \cdot 25 \text{ мм}^2$
- 6. Переведите значение площади из mm^2 в m^2 , учитывая, что 1 mm^2 = 0,000001 m^2
- Рассчитайте давление, производимое человеком при ходьбе по формуле: 7.

$$p_1 = \frac{P}{S}$$

Рассчитайте давление, производимое человеком стоя по формуле:

$$p_2 = \frac{P}{2S}$$

Результаты измерений и вычислений занесите в отчетную таблицу.

АДИКААТ КАНТЭРТО

т, кг	Р, Н	N	<i>S</i> , м ²	р₁, Па	р₂, Па

Наблюдение действия атмосферного давления

Опыт 1.

Приборы и материалы: трубка стеклянная; стакан с подкрашенной водой.

Порядок выполнения работы:

- 1. опустите стеклянную трубку в стакан с водой
- 2. верхний конец трубки плотно закройте пальцем и выньте ее из воды
- 3. объясните наблюдаемое явление
- 4. откройте верхний конец трубки

объясните наблюдаемое явление

Опыт 2.

Приборы и материалы: трубка стеклянная; стакан с подкрашенной водой, поршень.

Порядок выполнения работы:

- 1. вставьте в стеклянную трубку поршень
- 2. опустите трубку в стакан с водой
- 3. потяните поршень вверх

объясните наблюдаемое явление

Опыт 3.

Приборы и материалы: пипетка; стакан с подкрашенной водой.

Порядок выполнения работы:

- 1. наберите воды в пипетку
- 2. проанализируйте свои действия вовремя набора воды в пипетку
- 3. вылейте воду из пипетки в стакан
- 4. проанализируйте свои действия вовремя выливания воды из пипетки

Опыт 4.

Приборы и материалы: присоска резиновая; стакан с водой.

Порядок выполнения работы:

- 1. прижмите резиновую присоску к гладкой поверхности стола
- 2. попробуйте оторвать теперь присоску от стола
- 3. объясните наблюдаемое явление
- 4. смочите присоску водой и повторите п. № 1-2
- 5. объясните наблюдаемое явление

Исследование выталкивающей силы

Опыт 1 НАБЛЮДЕНИЕ ВЫТАЛКИВАЮЩИЕЙ СИЛЫ

Слегка наклонив пипетку, ввести ее в воду и медленно выпускать из нее воздух (или масло)

Опыт 2 ИЗМЕРЕНИЕ ВЫТАЛКИВАЮЩЕЙ СИЛЫ

Цель: научиться измерять выталкивающую силу

Приборы и материалы динамометр; стакан с водой; брусок металлический на нити.

Порядок выполнения работы

1. Подвесьте за нить металлический брусок к крючку динамометра и измерьте его вес в воздухе

$$P_{\it воздухе}$$

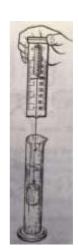
- 2. Когда брусок полностью опустится в воду снимите показания динамометра. Это будет вес бруска в воде P_{sode}
- 3. Вычислите выталкивающую силу, действующую на металлический брусок со стороны жидкости $F_{\uparrow_1} = P_{sostyxe} P_{sode}$
- 4. Измерьте длину a, ширину b, и высоту c бруска
- 5. Вычислите объем бруска $V = a \cdot b \cdot c$
- 6. Рассчитайте выталкивающую силу по формуле $F_{\uparrow_2} = \rho \cdot g \cdot V$
- 7. Результаты измерений занесите в отчетную таблицу.
- 8. Сравните значение выталкивающей силы F_{\uparrow_1} со значением F_{\uparrow_2} и сделайте вывод

Р _{воздухе} Н	P_{sode} H	F_{\uparrow_1} H	а м	<i>b</i> м	C M	V M ³	$F_{\uparrow_2} \mathrm{H}$

Опыт 3 СРАВНЕНИЕ СИЛЫ АРХИМЕДА С ВЕСОМ ВЫТЕСНЕННОЙ ЖИДКОСТИ

Приборы и материалы: динамометр; цилиндр металлический на нити; мензурка с водой.

Порядок выполнения работы:


- 1. измерьте при помощи динамометра вес металлического цилиндра в воздухе $P_{{\it soso.}}$
- 2. измерьте объем воды в мензурке V_1
- 3. погрузите цилиндр в воду
- 4. измерьте объем воды в мензурке с цилиндром V_2
- 5. измерьте при помощи динамометра вес металлического цилиндра в воде P_{sode}
- 6. рассчитайте силу Архимеда $F_{apx.} = P_{so3d.}$ P_{sode}
- 7. вычислите объем воды, вытесненной цилиндром $V_{\text{вытесн.воды}} = V_2 V_1$
- 8. рассчитайте массу вытесненной воды: $m_{\text{вытесн.воды}} = \rho_{\text{воды}} \cdot V_{\text{вытесн.воды}}$
- 9. рассчитайте вес воды, вытесненной цилиндром: $P_{\text{вытесн.воды.}} = m_{\text{вытесн.воды}} \cdot g$
- 10. сравните $F_{apx.}$ и $P_{вытесн.воды}$
- 11. сделайте вывод

Опыт 4 ИССЛЕДОВАНИЕ ФАКТОРОВ, ОТ КОТОРЫХ ЗАВИСИТ ВЕЛИЧИНА АРХИМЕДОВОЙ СИЛЫ

Приборы и материалы: динамометр; цилиндры чугунный и алюминиевый; стакан с водой стакан с раствором соли.

Порядок выполнения работы:

- 1. подвесьте чугунный цилиндр к крючку динамометра
- 2. медленно опускайте цилиндр в стакан с водой
- 3. наблюдайте за показаниями динамометра
- 4. сделайте вывод: зависит ли сила Архимеда от объёма погруженной части тела?

- 5. вычислите силу Архимеда, действующую на чугунный цилиндр при полном его погружении в воду $F_{apx,vyz,sode}$
- 6. перенесите чугунный цилиндр в стакан с раствором соли
- 7. измерьте силу Архимеда при полном погружении цилиндра в раствор соли $F_{apx,yyz, pacmsope}$
- 8. сравните $F_{apx.yyz.sode}$ и $F_{apx.yyz.pacmsope}$
- 9. сделайте вывод: зависит ли сила Архимеда от плотности жидкости
- 10. перенесите чугунный цилиндр в стакан с водой
- 11. при полном погружении цилиндра меняйте его глубину погружения. Следите за показаниями динамометра
- 12. сделайте вывод: зависит ли сила Архимеда от глубины погружения цилиндра?
- 13. вычислите силу Архимеда, действующую на алюминиевый цилиндр при полном его погружении в воду $F_{apx.an.sode}$
- 14. сравните $F_{apx.4yz.6ode}$ и $F_{apx.an.6ode}$
- 15. сделайте вывод: зависит ли сила Архимеда от массы тела и плотности вещества, из которого сделан цилиндр?

$P_{\it воздухе}$ Н	$\rho_{\it воды}$ кг/м 3	P_{sode} H	F_{\uparrow_1} H	ρ _{соли} кг/м ³	P_{conu} H	F_{\uparrow_2} H

Измерение работы при перемещении тела

Цель: научиться измерять работу силы, действующей по направлению движения тела.

Приборы и материалы: лента измерительная; динамометр; трибометр; брусок.

Порядок выполнения работы:

- 1. Измерьте вес бруска P с помощью динамометра.
- 2. Измерьте длину линейки трибометра *s*.
- 3. Поднимите брусок равномерно вверх на высоту *s* линейки трибометра.

- 4. Вычислите совершенную работу по формуле: $A = P \cdot s$. Эта работа была совершена по преодолению силы тяжести.
- 5. Положите трибометр на стол и с помощью динамометра перемещайте брусок равномерно по трибометру на такое же расстояние, как и в п.2.
- 6. Заметьте по динамометру силу F, с которой Вы тянули брусок.
- 7. Вычислите работу по формуле: $A = F \cdot s$. Эта работа была совершена по преодолению силы трения.
- 8. Результаты измерений и вычислений занесите в отчетную таблицу.
- 9. Сравните работу по преодолению силы тяжести и по преодолению силы трения и сделайте вывод.

S		F	Работа по преодолению	Работа по преодолению
M	Н	Н	силы тяжести	силы трения
			Дж	Дж

Измерение мощности при подъеме тела

Цель: научиться измерять мощность.

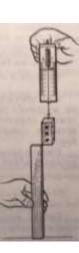
Приборы и материалы: лента измерительная; динамометр; трибометр; брусок; секундомер.

Порядок выполнения работы:

- 1. Измерьте вес бруска P с помощью динамометра.
- 2. Измерьте длину линейки трибометра *s*.
- 3. Поднимите брусок равномерно вверх на высоту *s* линейки трибометра.
- 4. Измерьте с помощью секундомера время подъема бруска *t*.
- 5. Вычислите совершенную работу по формуле: $A = P \cdot s$.
- 6. Вычислите развиваемую мощность по формуле:

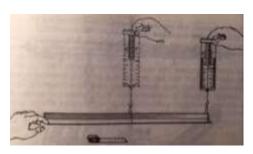
$$N = \frac{A}{t}$$

- 7. Результаты измерений и вычислений занесите в отчетную таблицу.
- 8. Сравните мощность, полученную Вами со значениями, полученными одноклассниками. Укажите причины различия результатов.


ОТЧЕТНАЯ ТАБЛИЦА

P	S	t	A	N
Н	M	c	Дж	Вт

Измерение момента силы


Цель: определение момента сил

Приборы и материалы: лента измерительная; динамометр; желоб; петля из прочной нити.

Порядок выполнения работы:

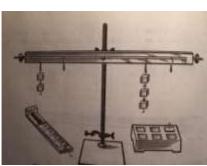
- 1. Сделайте нитяную петлю и оденьте ее на конец желоба.
- 2. Зацепитесь за нитяную петлю динамометром.
- 3. Пытайтесь поднять конец желоба с петлей с помощью динамометра, придерживая другой конец желоба рукой.
- 4. Следите за показаниями динамометра. Заметьте значение силы, необходимой для начала вращения желоба.
- 5. Измерьте плечо силы с помощью измерительной ленты.
- 6. Вычислите момент силы по формуле: $M = F \cdot l$
- 7. Переместите нитяную петлю в сторону центра желоба.
- 8. Повторите пункты 2-6.
- 9. Сделайте вывод, от чего зависит вращающее действие силы.
- 10. Результаты измерений и вычислений занесите в отчетную таблицу.
- 11. Сравните моменты сил и сделайте вывод.

ОТЧЕТНАЯ ТАБЛИЦА

<i>F</i> , H	<i>l</i> , м	М, Н∙м

Изучение равновесия тела под воздействием нескольких сил

Цель: Установить соотношение между моментами сил, приложенных к плечам рычага при его равновесии.


Приборы и материалы: штатив с муфтой, рычаг, набор грузов, линейка, динамометр.

Опыт 1

- 1. Закрепите в лапке штатива ось.
- 2. Установите рычаг на штатив и уравновесьте его в горизонтальном положении с помощью расположенных на его концах передвижных гаек.
- 3. Подвесьте в некоторой точке одного из плеч рычага два груза массой по $100\ \Gamma$
- 4. Подвесьте к другому плечу рычага один груз массой 100 г
- 5. Передвигая грузы, добейтесь равновесия рычага.
- 6. Рассчитайте силы, с которой грузы действуют на рычаг по формулам: $F_1 = m_1 g$ $F_2 = m_2 g$
- 7. Измерьте с помощью линейки длины плеч рычага $l_1 \ l_2$
- 8. Рассчитайте моменты сил по формулам: $M_1 = F_1 l_1 \ M_2 = F_2 l_2$
- 9. Рассчитайте $\frac{M1}{M_2}$ и сравните с единицей.
- 10. Результаты измерений и вычислений занесите в отчетную таблицу.

Опыт 2

1. Подвесьте в некоторой точке одного из плеч рычага три груза массой по 100 г

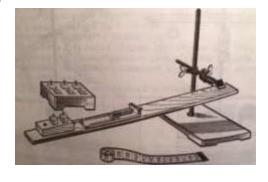
- 2. Подвесьте к другому плечу рычага один груз массой 100 г
- 3. Передвигая грузы, добейтесь равновесия рычага.
- 4. Рассчитайте силы, с которой грузы действуют на рычаг по формулам: $F_1 = m_1 g$ $F_2 = m_2 g$
- 5. Измерьте с помощью линейки длины плеч рычага $l_1 \ l_2$
- 6. Рассчитайте моменты сил по формулам: $M_1 = F_1 l_1 \ M_2 = F_2 \square_2$
- 7. Рассчитайте $\frac{M1}{M2}$ и сравните с единицей.
- 8. Результаты измерений и вычислений занесите в отчетную таблицу.

Опыт 3

- 1. Подвесьте в некоторой точке одного из плеч рычага два груза массой по 100 г
- 2. Рассчитайте силу, с которой грузы действуют на рычаг по формуле: $F_1 = m_1 g$
- 3. Прикрепите к другому плечу рычага динамометр и определите силу, которую необходимо приложить к рычагу для того, чтобы он находился в равновесии F_2
- 4. Измерьте с помощью линейки длины плеч рычага $l_1 \ l_2$
- 5. Рассчитайте моменты сил по формулам: $M_1 = F_1 l_1$ $M_2 = F_2 l_2$
- 6. Рассчитайте $\frac{M1}{M2}$ и сравните с единицей
- 7. Результаты измерений и вычислений занесите в отчетную таблицу
- 8. По результатам трех опытов сделайте вывод, когда рычаг находится в равновесии.

ОТЧЕТНАЯ ТАБЛИЦА

No	<i>l</i> 1, M	<i>l</i> 2, м	F_1 , H	F_2 , H	<i>М</i> 1, Н м	<i>М</i> 2, Н м	$\frac{M_1}{M_2}$
опыта							\overline{M}_2
1							
2							
3							


Измерение КПД наклонной плоскости

Цель: научиться вычислять КПД простого механизма

Приборы и материалы штатив; трибометр; динамометр; набор грузов; лента измерительная.

Порядок выполнения работы:

- 1. установите линейку трибометра в наклонном виде с помощью питатива
- 2. положите брусок на линейку и прикрепите к нему крючок динамометра
 - 3. равномерно тяните брусок вверх за динамометр по наклонной плоскости
- 4. по показаниям динамометра отметьте значение силы F , с которой вы тянете
- 5. измерьте лентой длину наклонной плоскости *s*
- 6. вычислите затраченную работу по формуле $A_{3атраченна \, g} = F \cdot s$
- 7. измерьте вес бруска P: подвесьте вертикально брусок к крючку динамометра и снимите значение силы
- 8. измерьте высоту h, на которую поднята линейка трибометра

- 9. рассчитайте полезную работу по формуле $A_{\text{полезная}} = P \cdot h$
- 10. вычислите значение КПД по формуле $\eta = \frac{A_{\text{полезная}}}{A_{\text{даприменная}}}$
- 11. результаты измерений и вычислений занесите в отчетную таблицу.

F	S	$A_{\scriptscriptstyle 3 ampa \cdot \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! \! $	P	h	$A_{\it noлeзнag}$	η